MakeItFrom.com
Menu (ESC)

AWS E80C-B8 vs. 2124 Aluminum

AWS E80C-B8 belongs to the iron alloys classification, while 2124 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E80C-B8 and the bottom bar is 2124 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 19
5.7
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
27
Tensile Strength: Ultimate (UTS), MPa 620
490
Tensile Strength: Yield (Proof), MPa 540
430

Thermal Properties

Latent Heat of Fusion, J/g 270
390
Melting Completion (Liquidus), °C 1450
640
Melting Onset (Solidus), °C 1410
500
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 25
150
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.1
38
Electrical Conductivity: Equal Weight (Specific), % IACS 11
110

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
10
Density, g/cm3 7.8
3.0
Embodied Carbon, kg CO2/kg material 2.1
8.2
Embodied Energy, MJ/kg 28
150
Embodied Water, L/kg 89
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
27
Resilience: Unit (Modulus of Resilience), kJ/m3 740
1290
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 22
45
Strength to Weight: Bending, points 21
46
Thermal Diffusivity, mm2/s 6.9
58
Thermal Shock Resistance, points 17
21

Alloy Composition

Aluminum (Al), % 0
91.3 to 94.7
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 8.0 to 10.5
0 to 0.1
Copper (Cu), % 0 to 0.35
3.8 to 4.9
Iron (Fe), % 85.5 to 90.6
0 to 0.3
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0.4 to 1.0
0.3 to 0.9
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.25 to 0.6
0 to 0.2
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0 to 0.15
Vanadium (V), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15