MakeItFrom.com
Menu (ESC)

AWS E80C-B8 vs. 364.0 Aluminum

AWS E80C-B8 belongs to the iron alloys classification, while 364.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E80C-B8 and the bottom bar is 364.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
72
Elongation at Break, % 19
7.5
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
27
Tensile Strength: Ultimate (UTS), MPa 620
300
Tensile Strength: Yield (Proof), MPa 540
160

Thermal Properties

Latent Heat of Fusion, J/g 270
520
Melting Completion (Liquidus), °C 1450
600
Melting Onset (Solidus), °C 1410
560
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 25
120
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.1
30
Electrical Conductivity: Equal Weight (Specific), % IACS 11
100

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
11
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 2.1
8.0
Embodied Energy, MJ/kg 28
150
Embodied Water, L/kg 89
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
19
Resilience: Unit (Modulus of Resilience), kJ/m3 740
180
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
53
Strength to Weight: Axial, points 22
31
Strength to Weight: Bending, points 21
38
Thermal Diffusivity, mm2/s 6.9
51
Thermal Shock Resistance, points 17
14

Alloy Composition

Aluminum (Al), % 0
87.2 to 92
Beryllium (Be), % 0
0.020 to 0.040
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 8.0 to 10.5
0.25 to 0.5
Copper (Cu), % 0 to 0.35
0 to 0.2
Iron (Fe), % 85.5 to 90.6
0 to 1.5
Magnesium (Mg), % 0
0.2 to 0.4
Manganese (Mn), % 0.4 to 1.0
0 to 0.1
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 0 to 0.2
0 to 0.15
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.25 to 0.6
7.5 to 9.5
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0 to 0.15
Vanadium (V), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15