MakeItFrom.com
Menu (ESC)

AWS E80C-B8 vs. 384.0 Aluminum

AWS E80C-B8 belongs to the iron alloys classification, while 384.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E80C-B8 and the bottom bar is 384.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
74
Elongation at Break, % 19
2.5
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
28
Tensile Strength: Ultimate (UTS), MPa 620
330
Tensile Strength: Yield (Proof), MPa 540
170

Thermal Properties

Latent Heat of Fusion, J/g 270
550
Melting Completion (Liquidus), °C 1450
580
Melting Onset (Solidus), °C 1410
530
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 25
96
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.1
22
Electrical Conductivity: Equal Weight (Specific), % IACS 11
69

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
11
Density, g/cm3 7.8
2.9
Embodied Carbon, kg CO2/kg material 2.1
7.4
Embodied Energy, MJ/kg 28
140
Embodied Water, L/kg 89
1010

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
6.9
Resilience: Unit (Modulus of Resilience), kJ/m3 740
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
49
Strength to Weight: Axial, points 22
32
Strength to Weight: Bending, points 21
37
Thermal Diffusivity, mm2/s 6.9
39
Thermal Shock Resistance, points 17
15

Alloy Composition

Aluminum (Al), % 0
77.3 to 86.5
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 8.0 to 10.5
0
Copper (Cu), % 0 to 0.35
3.0 to 4.5
Iron (Fe), % 85.5 to 90.6
0 to 1.3
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0.4 to 1.0
0 to 0.5
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 0 to 0.2
0 to 0.5
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.25 to 0.6
10.5 to 12
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0 to 0.35
Vanadium (V), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 3.0
Residuals, % 0
0 to 0.5