MakeItFrom.com
Menu (ESC)

AWS E80C-B8 vs. 5026 Aluminum

AWS E80C-B8 belongs to the iron alloys classification, while 5026 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E80C-B8 and the bottom bar is 5026 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 19
5.1 to 11
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
26
Tensile Strength: Ultimate (UTS), MPa 620
260 to 320
Tensile Strength: Yield (Proof), MPa 540
120 to 250

Thermal Properties

Latent Heat of Fusion, J/g 270
400
Melting Completion (Liquidus), °C 1450
650
Melting Onset (Solidus), °C 1410
510
Specific Heat Capacity, J/kg-K 470
890
Thermal Conductivity, W/m-K 25
130
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.1
31
Electrical Conductivity: Equal Weight (Specific), % IACS 11
99

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
9.5
Density, g/cm3 7.8
2.8
Embodied Carbon, kg CO2/kg material 2.1
8.9
Embodied Energy, MJ/kg 28
150
Embodied Water, L/kg 89
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
15 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 740
100 to 440
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
49
Strength to Weight: Axial, points 22
26 to 32
Strength to Weight: Bending, points 21
33 to 37
Thermal Diffusivity, mm2/s 6.9
52
Thermal Shock Resistance, points 17
11 to 14

Alloy Composition

Aluminum (Al), % 0
88.2 to 94.7
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 8.0 to 10.5
0 to 0.3
Copper (Cu), % 0 to 0.35
0.1 to 0.8
Iron (Fe), % 85.5 to 90.6
0.2 to 1.0
Magnesium (Mg), % 0
3.9 to 4.9
Manganese (Mn), % 0.4 to 1.0
0.6 to 1.8
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.25 to 0.6
0.55 to 1.4
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0 to 0.2
Vanadium (V), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 1.0
Zirconium (Zr), % 0
0 to 0.3
Residuals, % 0
0 to 0.15