MakeItFrom.com
Menu (ESC)

AWS E80C-B8 vs. 513.0 Aluminum

AWS E80C-B8 belongs to the iron alloys classification, while 513.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E80C-B8 and the bottom bar is 513.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 19
5.7
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
26
Tensile Strength: Ultimate (UTS), MPa 620
200
Tensile Strength: Yield (Proof), MPa 540
120

Thermal Properties

Latent Heat of Fusion, J/g 270
390
Melting Completion (Liquidus), °C 1450
640
Melting Onset (Solidus), °C 1410
590
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 25
130
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.1
34
Electrical Conductivity: Equal Weight (Specific), % IACS 11
110

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 2.1
8.8
Embodied Energy, MJ/kg 28
150
Embodied Water, L/kg 89
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
9.8
Resilience: Unit (Modulus of Resilience), kJ/m3 740
100
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 22
20
Strength to Weight: Bending, points 21
28
Thermal Diffusivity, mm2/s 6.9
54
Thermal Shock Resistance, points 17
8.8

Alloy Composition

Aluminum (Al), % 0
91.9 to 95.1
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 8.0 to 10.5
0
Copper (Cu), % 0 to 0.35
0 to 0.1
Iron (Fe), % 85.5 to 90.6
0 to 0.4
Magnesium (Mg), % 0
3.5 to 4.5
Manganese (Mn), % 0.4 to 1.0
0 to 0.3
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.25 to 0.6
0 to 0.3
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0 to 0.2
Vanadium (V), % 0 to 0.030
0
Zinc (Zn), % 0
1.4 to 2.2
Residuals, % 0
0 to 0.15