MakeItFrom.com
Menu (ESC)

AWS E80C-B8 vs. 5182 Aluminum

AWS E80C-B8 belongs to the iron alloys classification, while 5182 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E80C-B8 and the bottom bar is 5182 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 19
1.1 to 12
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
25
Tensile Strength: Ultimate (UTS), MPa 620
280 to 420
Tensile Strength: Yield (Proof), MPa 540
130 to 360

Thermal Properties

Latent Heat of Fusion, J/g 270
390
Melting Completion (Liquidus), °C 1450
640
Melting Onset (Solidus), °C 1410
590
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 25
130
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.1
28
Electrical Conductivity: Equal Weight (Specific), % IACS 11
94

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 2.1
8.9
Embodied Energy, MJ/kg 28
150
Embodied Water, L/kg 89
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
2.6 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 740
120 to 950
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 22
29 to 44
Strength to Weight: Bending, points 21
36 to 47
Thermal Diffusivity, mm2/s 6.9
53
Thermal Shock Resistance, points 17
12 to 19

Alloy Composition

Aluminum (Al), % 0
93.2 to 95.8
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 8.0 to 10.5
0 to 0.1
Copper (Cu), % 0 to 0.35
0 to 0.15
Iron (Fe), % 85.5 to 90.6
0 to 0.35
Magnesium (Mg), % 0
4.0 to 5.0
Manganese (Mn), % 0.4 to 1.0
0.2 to 0.5
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.25 to 0.6
0 to 0.2
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15