MakeItFrom.com
Menu (ESC)

AWS E80C-B8 vs. A201.0 Aluminum

AWS E80C-B8 belongs to the iron alloys classification, while A201.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E80C-B8 and the bottom bar is A201.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 19
4.7
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
27
Tensile Strength: Ultimate (UTS), MPa 620
480
Tensile Strength: Yield (Proof), MPa 540
420

Thermal Properties

Latent Heat of Fusion, J/g 270
390
Melting Completion (Liquidus), °C 1450
650
Melting Onset (Solidus), °C 1410
570
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 25
120
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.1
30
Electrical Conductivity: Equal Weight (Specific), % IACS 11
90

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
11
Density, g/cm3 7.8
3.0
Embodied Carbon, kg CO2/kg material 2.1
8.1
Embodied Energy, MJ/kg 28
150
Embodied Water, L/kg 89
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
22
Resilience: Unit (Modulus of Resilience), kJ/m3 740
1250
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 22
44
Strength to Weight: Bending, points 21
45
Thermal Diffusivity, mm2/s 6.9
46
Thermal Shock Resistance, points 17
21

Alloy Composition

Aluminum (Al), % 0
93.7 to 95.5
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 8.0 to 10.5
0
Copper (Cu), % 0 to 0.35
4.0 to 5.0
Iron (Fe), % 85.5 to 90.6
0 to 0.1
Magnesium (Mg), % 0
0.15 to 0.35
Manganese (Mn), % 0.4 to 1.0
0.2 to 0.4
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.25 to 0.6
0 to 0.050
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0.15 to 0.35
Vanadium (V), % 0 to 0.030
0
Residuals, % 0
0 to 0.1