MakeItFrom.com
Menu (ESC)

AWS E80C-B8 vs. SAE-AISI H11 Steel

Both AWS E80C-B8 and SAE-AISI H11 steel are iron alloys. They have a very high 95% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AWS E80C-B8 and the bottom bar is SAE-AISI H11 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 75
74
Tensile Strength: Ultimate (UTS), MPa 620
690 to 1840

Thermal Properties

Latent Heat of Fusion, J/g 270
270
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1410
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 25
42
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.1
8.2
Electrical Conductivity: Equal Weight (Specific), % IACS 11
9.5

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
5.5
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.1
3.0
Embodied Energy, MJ/kg 28
43
Embodied Water, L/kg 89
75

Common Calculations

PREN (Pitting Resistance) 13
9.6
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 22
25 to 66
Strength to Weight: Bending, points 21
22 to 43
Thermal Diffusivity, mm2/s 6.9
11
Thermal Shock Resistance, points 17
22 to 58

Alloy Composition

Carbon (C), % 0 to 0.1
0.33 to 0.43
Chromium (Cr), % 8.0 to 10.5
4.8 to 5.5
Copper (Cu), % 0 to 0.35
0 to 0.25
Iron (Fe), % 85.5 to 90.6
89.6 to 92.5
Manganese (Mn), % 0.4 to 1.0
0.2 to 0.5
Molybdenum (Mo), % 0.8 to 1.2
1.1 to 1.6
Nickel (Ni), % 0 to 0.2
0 to 0.3
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0.25 to 0.6
0.8 to 1.2
Sulfur (S), % 0 to 0.025
0 to 0.030
Vanadium (V), % 0 to 0.030
0.3 to 0.6
Residuals, % 0 to 0.5
0