MakeItFrom.com
Menu (ESC)

AWS E80C-B8 vs. C48600 Brass

AWS E80C-B8 belongs to the iron alloys classification, while C48600 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AWS E80C-B8 and the bottom bar is C48600 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 19
20 to 25
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 75
39
Tensile Strength: Ultimate (UTS), MPa 620
280 to 360
Tensile Strength: Yield (Proof), MPa 540
110 to 170

Thermal Properties

Latent Heat of Fusion, J/g 270
170
Melting Completion (Liquidus), °C 1450
900
Melting Onset (Solidus), °C 1410
890
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 25
110
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.1
25
Electrical Conductivity: Equal Weight (Specific), % IACS 11
28

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
24
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 2.1
2.8
Embodied Energy, MJ/kg 28
47
Embodied Water, L/kg 89
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
55 to 59
Resilience: Unit (Modulus of Resilience), kJ/m3 740
61 to 140
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 22
9.5 to 12
Strength to Weight: Bending, points 21
12 to 14
Thermal Diffusivity, mm2/s 6.9
36
Thermal Shock Resistance, points 17
9.3 to 12

Alloy Composition

Arsenic (As), % 0
0.020 to 0.25
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 8.0 to 10.5
0
Copper (Cu), % 0 to 0.35
59 to 62
Iron (Fe), % 85.5 to 90.6
0
Lead (Pb), % 0
1.0 to 2.5
Manganese (Mn), % 0.4 to 1.0
0
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.25 to 0.6
0
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0.3 to 1.5
Vanadium (V), % 0 to 0.030
0
Zinc (Zn), % 0
33.4 to 39.7
Residuals, % 0
0 to 0.4