MakeItFrom.com
Menu (ESC)

AWS E80C-Ni1 vs. N08810 Stainless Steel

Both AWS E80C-Ni1 and N08810 stainless steel are iron alloys. They have 48% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AWS E80C-Ni1 and the bottom bar is N08810 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 27
33
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 72
77
Tensile Strength: Ultimate (UTS), MPa 620
520
Tensile Strength: Yield (Proof), MPa 540
200

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Melting Completion (Liquidus), °C 1460
1400
Melting Onset (Solidus), °C 1420
1350
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 40
12
Thermal Expansion, µm/m-K 13
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 2.6
30
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 1.6
5.3
Embodied Energy, MJ/kg 21
76
Embodied Water, L/kg 49
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
140
Resilience: Unit (Modulus of Resilience), kJ/m3 770
100
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 22
18
Strength to Weight: Bending, points 21
18
Thermal Diffusivity, mm2/s 11
3.0
Thermal Shock Resistance, points 18
13

Alloy Composition

Aluminum (Al), % 0
0.15 to 0.6
Carbon (C), % 0 to 0.12
0.050 to 0.1
Chromium (Cr), % 0
19 to 23
Copper (Cu), % 0 to 0.35
0 to 0.75
Iron (Fe), % 95.1 to 99.2
39.5 to 50.7
Manganese (Mn), % 0 to 1.5
0 to 1.5
Molybdenum (Mo), % 0 to 0.3
0
Nickel (Ni), % 0.8 to 1.1
30 to 35
Phosphorus (P), % 0 to 0.025
0 to 0.045
Silicon (Si), % 0 to 0.9
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0
0.15 to 0.6
Vanadium (V), % 0 to 0.030
0
Residuals, % 0 to 0.5
0