MakeItFrom.com
Menu (ESC)

AWS E80C-Ni2 vs. 711.0 Aluminum

AWS E80C-Ni2 belongs to the iron alloys classification, while 711.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E80C-Ni2 and the bottom bar is 711.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 27
7.8
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 72
27
Tensile Strength: Ultimate (UTS), MPa 620
220
Tensile Strength: Yield (Proof), MPa 540
140

Thermal Properties

Latent Heat of Fusion, J/g 250
380
Melting Completion (Liquidus), °C 1450
640
Melting Onset (Solidus), °C 1410
610
Specific Heat Capacity, J/kg-K 470
860
Thermal Conductivity, W/m-K 52
160
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
40
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
120

Otherwise Unclassified Properties

Base Metal Price, % relative 3.3
9.5
Density, g/cm3 7.8
3.0
Embodied Carbon, kg CO2/kg material 1.6
7.9
Embodied Energy, MJ/kg 22
150
Embodied Water, L/kg 51
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
15
Resilience: Unit (Modulus of Resilience), kJ/m3 770
140
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
45
Strength to Weight: Axial, points 22
20
Strength to Weight: Bending, points 21
26
Thermal Diffusivity, mm2/s 14
61
Thermal Shock Resistance, points 18
9.3

Alloy Composition

Aluminum (Al), % 0
89.8 to 92.7
Carbon (C), % 0 to 0.12
0
Copper (Cu), % 0 to 0.35
0.35 to 0.65
Iron (Fe), % 93.8 to 98.3
0.7 to 1.4
Magnesium (Mg), % 0
0.25 to 0.45
Manganese (Mn), % 0 to 1.5
0 to 0.050
Nickel (Ni), % 1.8 to 2.8
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.9
0 to 0.3
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Vanadium (V), % 0 to 0.030
0
Zinc (Zn), % 0
6.0 to 7.0
Residuals, % 0
0 to 0.15