MakeItFrom.com
Menu (ESC)

AWS E80C-Ni2 vs. AISI 321 Stainless Steel

Both AWS E80C-Ni2 and AISI 321 stainless steel are iron alloys. They have 73% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AWS E80C-Ni2 and the bottom bar is AISI 321 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 27
34 to 50
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 72
77
Tensile Strength: Ultimate (UTS), MPa 620
590 to 690
Tensile Strength: Yield (Proof), MPa 540
220 to 350

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Melting Completion (Liquidus), °C 1450
1430
Melting Onset (Solidus), °C 1410
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 52
16
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 3.3
16
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.6
3.2
Embodied Energy, MJ/kg 22
45
Embodied Water, L/kg 51
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
190 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 770
130 to 310
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 22
21 to 25
Strength to Weight: Bending, points 21
20 to 22
Thermal Diffusivity, mm2/s 14
4.1
Thermal Shock Resistance, points 18
13 to 15

Alloy Composition

Carbon (C), % 0 to 0.12
0 to 0.080
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 0 to 0.35
0
Iron (Fe), % 93.8 to 98.3
65.3 to 74
Manganese (Mn), % 0 to 1.5
0 to 2.0
Nickel (Ni), % 1.8 to 2.8
9.0 to 12
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.025
0 to 0.045
Silicon (Si), % 0 to 0.9
0 to 0.75
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
0 to 0.7
Vanadium (V), % 0 to 0.030
0
Residuals, % 0 to 0.5
0