MakeItFrom.com
Menu (ESC)

AWS E80C-Ni2 vs. EN AC-51200 Aluminum

AWS E80C-Ni2 belongs to the iron alloys classification, while EN AC-51200 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E80C-Ni2 and the bottom bar is EN AC-51200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
67
Elongation at Break, % 27
1.1
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
25
Tensile Strength: Ultimate (UTS), MPa 620
220
Tensile Strength: Yield (Proof), MPa 540
150

Thermal Properties

Latent Heat of Fusion, J/g 250
410
Melting Completion (Liquidus), °C 1450
640
Melting Onset (Solidus), °C 1410
570
Specific Heat Capacity, J/kg-K 470
910
Thermal Conductivity, W/m-K 52
92
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
22
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
74

Otherwise Unclassified Properties

Base Metal Price, % relative 3.3
9.5
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 1.6
9.6
Embodied Energy, MJ/kg 22
150
Embodied Water, L/kg 51
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
2.2
Resilience: Unit (Modulus of Resilience), kJ/m3 770
160
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
51
Strength to Weight: Axial, points 22
24
Strength to Weight: Bending, points 21
31
Thermal Diffusivity, mm2/s 14
39
Thermal Shock Resistance, points 18
10

Alloy Composition

Aluminum (Al), % 0
84.5 to 92
Carbon (C), % 0 to 0.12
0
Copper (Cu), % 0 to 0.35
0 to 0.1
Iron (Fe), % 93.8 to 98.3
0 to 1.0
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
8.0 to 10.5
Manganese (Mn), % 0 to 1.5
0 to 0.55
Nickel (Ni), % 1.8 to 2.8
0 to 0.1
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.9
0 to 2.5
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.2
Vanadium (V), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15