MakeItFrom.com
Menu (ESC)

AWS E80C-Ni2 vs. C84400 Valve Metal

AWS E80C-Ni2 belongs to the iron alloys classification, while C84400 valve metal belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AWS E80C-Ni2 and the bottom bar is C84400 valve metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 27
19
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 72
39
Tensile Strength: Ultimate (UTS), MPa 620
230
Tensile Strength: Yield (Proof), MPa 540
110

Thermal Properties

Latent Heat of Fusion, J/g 250
180
Melting Completion (Liquidus), °C 1450
1000
Melting Onset (Solidus), °C 1410
840
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 52
72
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
16
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
17

Otherwise Unclassified Properties

Base Metal Price, % relative 3.3
29
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 1.6
2.8
Embodied Energy, MJ/kg 22
46
Embodied Water, L/kg 51
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
36
Resilience: Unit (Modulus of Resilience), kJ/m3 770
58
Stiffness to Weight: Axial, points 13
6.6
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 22
7.2
Strength to Weight: Bending, points 21
9.4
Thermal Diffusivity, mm2/s 14
22
Thermal Shock Resistance, points 18
8.3

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.12
0
Copper (Cu), % 0 to 0.35
78 to 82
Iron (Fe), % 93.8 to 98.3
0 to 0.4
Lead (Pb), % 0
6.0 to 8.0
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 1.8 to 2.8
0 to 1.0
Phosphorus (P), % 0 to 0.025
0 to 1.5
Silicon (Si), % 0 to 0.9
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.080
Tin (Sn), % 0
2.3 to 3.5
Vanadium (V), % 0 to 0.030
0
Zinc (Zn), % 0
7.0 to 10
Residuals, % 0
0 to 0.7