MakeItFrom.com
Menu (ESC)

AWS E80C-W2 vs. AISI 301LN Stainless Steel

Both AWS E80C-W2 and AISI 301LN stainless steel are iron alloys. They have 77% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AWS E80C-W2 and the bottom bar is AISI 301LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 25
23 to 51
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 72
77
Tensile Strength: Ultimate (UTS), MPa 620
630 to 1060
Tensile Strength: Yield (Proof), MPa 540
270 to 770

Thermal Properties

Latent Heat of Fusion, J/g 260
280
Melting Completion (Liquidus), °C 1450
1430
Melting Onset (Solidus), °C 1410
1380
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 39
15
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 2.6
13
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.5
2.7
Embodied Energy, MJ/kg 20
39
Embodied Water, L/kg 51
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
220 to 290
Resilience: Unit (Modulus of Resilience), kJ/m3 770
180 to 1520
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 22
22 to 38
Strength to Weight: Bending, points 21
21 to 30
Thermal Diffusivity, mm2/s 10
4.0
Thermal Shock Resistance, points 18
14 to 24

Alloy Composition

Carbon (C), % 0 to 0.12
0 to 0.030
Chromium (Cr), % 0.45 to 0.7
16 to 18
Copper (Cu), % 0.3 to 0.75
0
Iron (Fe), % 94.9 to 98
70.7 to 77.9
Manganese (Mn), % 0.5 to 1.3
0 to 2.0
Nickel (Ni), % 0.4 to 0.8
6.0 to 8.0
Nitrogen (N), % 0
0.070 to 0.2
Phosphorus (P), % 0 to 0.025
0 to 0.045
Silicon (Si), % 0.35 to 0.8
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Vanadium (V), % 0 to 0.030
0
Residuals, % 0 to 0.5
0