MakeItFrom.com
Menu (ESC)

AWS E90C-B3 vs. ASTM A369 Grade FP92

Both AWS E90C-B3 and ASTM A369 grade FP92 are iron alloys. They have a moderately high 91% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AWS E90C-B3 and the bottom bar is ASTM A369 grade FP92.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 19
19
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Tensile Strength: Ultimate (UTS), MPa 710
710
Tensile Strength: Yield (Proof), MPa 600
490

Thermal Properties

Latent Heat of Fusion, J/g 260
260
Melting Completion (Liquidus), °C 1460
1490
Melting Onset (Solidus), °C 1420
1450
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 41
26
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
9.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
10

Otherwise Unclassified Properties

Base Metal Price, % relative 4.0
11
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.8
2.8
Embodied Energy, MJ/kg 24
40
Embodied Water, L/kg 59
89

Common Calculations

PREN (Pitting Resistance) 5.7
14
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
120
Resilience: Unit (Modulus of Resilience), kJ/m3 970
620
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 25
25
Strength to Weight: Bending, points 23
22
Thermal Diffusivity, mm2/s 11
6.9
Thermal Shock Resistance, points 21
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0.050 to 0.12
0.070 to 0.13
Chromium (Cr), % 2.0 to 2.5
8.5 to 9.5
Copper (Cu), % 0 to 0.35
0
Iron (Fe), % 93.4 to 96.4
85.8 to 89.1
Manganese (Mn), % 0.4 to 1.0
0.3 to 0.6
Molybdenum (Mo), % 0.9 to 1.2
0.3 to 0.6
Nickel (Ni), % 0 to 0.2
0 to 0.4
Niobium (Nb), % 0
0.040 to 0.090
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0 to 0.025
0 to 0.020
Silicon (Si), % 0.25 to 0.6
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
1.5 to 2.0
Vanadium (V), % 0 to 0.030
0.15 to 0.25
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 0.5
0