MakeItFrom.com
Menu (ESC)

AWS E90C-B3 vs. CC764S Brass

AWS E90C-B3 belongs to the iron alloys classification, while CC764S brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AWS E90C-B3 and the bottom bar is CC764S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 19
15
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
41
Tensile Strength: Ultimate (UTS), MPa 710
680
Tensile Strength: Yield (Proof), MPa 600
290

Thermal Properties

Latent Heat of Fusion, J/g 260
180
Melting Completion (Liquidus), °C 1460
850
Melting Onset (Solidus), °C 1420
810
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 41
94
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
32
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
36

Otherwise Unclassified Properties

Base Metal Price, % relative 4.0
23
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.8
2.9
Embodied Energy, MJ/kg 24
49
Embodied Water, L/kg 59
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
80
Resilience: Unit (Modulus of Resilience), kJ/m3 970
390
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 25
24
Strength to Weight: Bending, points 23
22
Thermal Diffusivity, mm2/s 11
30
Thermal Shock Resistance, points 21
22

Alloy Composition

Aluminum (Al), % 0
1.0 to 3.0
Antimony (Sb), % 0
0 to 0.050
Carbon (C), % 0.050 to 0.12
0
Chromium (Cr), % 2.0 to 2.5
0
Copper (Cu), % 0 to 0.35
52 to 66
Iron (Fe), % 93.4 to 96.4
0.5 to 2.5
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0.4 to 1.0
0.3 to 4.0
Molybdenum (Mo), % 0.9 to 1.2
0
Nickel (Ni), % 0 to 0.2
0 to 3.0
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0.25 to 0.6
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.3
Vanadium (V), % 0 to 0.030
0
Zinc (Zn), % 0
20.7 to 50.2
Residuals, % 0 to 0.5
0