MakeItFrom.com
Menu (ESC)

AWS E90C-B3 vs. C17500 Copper

AWS E90C-B3 belongs to the iron alloys classification, while C17500 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AWS E90C-B3 and the bottom bar is C17500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 19
6.0 to 30
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
45
Tensile Strength: Ultimate (UTS), MPa 710
310 to 860
Tensile Strength: Yield (Proof), MPa 600
170 to 760

Thermal Properties

Latent Heat of Fusion, J/g 260
220
Melting Completion (Liquidus), °C 1460
1060
Melting Onset (Solidus), °C 1420
1020
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 41
200
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
24 to 53
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
24 to 54

Otherwise Unclassified Properties

Base Metal Price, % relative 4.0
60
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.8
4.7
Embodied Energy, MJ/kg 24
73
Embodied Water, L/kg 59
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
30 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 970
120 to 2390
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 25
9.7 to 27
Strength to Weight: Bending, points 23
11 to 23
Thermal Diffusivity, mm2/s 11
59
Thermal Shock Resistance, points 21
11 to 29

Alloy Composition

Aluminum (Al), % 0
0 to 0.2
Beryllium (Be), % 0
0.4 to 0.7
Carbon (C), % 0.050 to 0.12
0
Chromium (Cr), % 2.0 to 2.5
0
Cobalt (Co), % 0
2.4 to 2.7
Copper (Cu), % 0 to 0.35
95.6 to 97.2
Iron (Fe), % 93.4 to 96.4
0 to 0.1
Manganese (Mn), % 0.4 to 1.0
0
Molybdenum (Mo), % 0.9 to 1.2
0
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.25 to 0.6
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Vanadium (V), % 0 to 0.030
0
Residuals, % 0
0 to 0.5