MakeItFrom.com
Menu (ESC)

AWS E90C-B3 vs. C67000 Bronze

AWS E90C-B3 belongs to the iron alloys classification, while C67000 bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AWS E90C-B3 and the bottom bar is C67000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 19
5.6 to 11
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
42
Tensile Strength: Ultimate (UTS), MPa 710
660 to 880
Tensile Strength: Yield (Proof), MPa 600
350 to 540

Thermal Properties

Latent Heat of Fusion, J/g 260
190
Melting Completion (Liquidus), °C 1460
900
Melting Onset (Solidus), °C 1420
850
Specific Heat Capacity, J/kg-K 470
410
Thermal Conductivity, W/m-K 41
99
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
22
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
25

Otherwise Unclassified Properties

Base Metal Price, % relative 4.0
23
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.8
2.9
Embodied Energy, MJ/kg 24
49
Embodied Water, L/kg 59
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
43 to 62
Resilience: Unit (Modulus of Resilience), kJ/m3 970
560 to 1290
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 25
23 to 31
Strength to Weight: Bending, points 23
21 to 26
Thermal Diffusivity, mm2/s 11
30
Thermal Shock Resistance, points 21
21 to 29

Alloy Composition

Aluminum (Al), % 0
3.0 to 6.0
Carbon (C), % 0.050 to 0.12
0
Chromium (Cr), % 2.0 to 2.5
0
Copper (Cu), % 0 to 0.35
63 to 68
Iron (Fe), % 93.4 to 96.4
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0.4 to 1.0
2.5 to 5.0
Molybdenum (Mo), % 0.9 to 1.2
0
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.25 to 0.6
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.5
Vanadium (V), % 0 to 0.030
0
Zinc (Zn), % 0
21.8 to 32.5
Residuals, % 0
0 to 0.5