MakeItFrom.com
Menu (ESC)

AWS E90C-B3 vs. S32950 Stainless Steel

Both AWS E90C-B3 and S32950 stainless steel are iron alloys. They have 69% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AWS E90C-B3 and the bottom bar is S32950 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 19
17
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 73
80
Tensile Strength: Ultimate (UTS), MPa 710
780
Tensile Strength: Yield (Proof), MPa 600
550

Thermal Properties

Latent Heat of Fusion, J/g 260
300
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1420
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 41
16
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 4.0
17
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.8
3.4
Embodied Energy, MJ/kg 24
47
Embodied Water, L/kg 59
180

Common Calculations

PREN (Pitting Resistance) 5.7
37
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
120
Resilience: Unit (Modulus of Resilience), kJ/m3 970
730
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 25
28
Strength to Weight: Bending, points 23
24
Thermal Diffusivity, mm2/s 11
4.3
Thermal Shock Resistance, points 21
21

Alloy Composition

Carbon (C), % 0.050 to 0.12
0 to 0.030
Chromium (Cr), % 2.0 to 2.5
26 to 29
Copper (Cu), % 0 to 0.35
0
Iron (Fe), % 93.4 to 96.4
60.3 to 69.4
Manganese (Mn), % 0.4 to 1.0
0 to 2.0
Molybdenum (Mo), % 0.9 to 1.2
1.0 to 2.5
Nickel (Ni), % 0 to 0.2
3.5 to 5.2
Nitrogen (N), % 0
0.15 to 0.35
Phosphorus (P), % 0 to 0.025
0 to 0.035
Silicon (Si), % 0.25 to 0.6
0 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.010
Vanadium (V), % 0 to 0.030
0
Residuals, % 0 to 0.5
0