MakeItFrom.com
Menu (ESC)

AWS E90C-B3 vs. S43037 Stainless Steel

Both AWS E90C-B3 and S43037 stainless steel are iron alloys. They have 84% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AWS E90C-B3 and the bottom bar is S43037 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 19
25
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Tensile Strength: Ultimate (UTS), MPa 710
410
Tensile Strength: Yield (Proof), MPa 600
230

Thermal Properties

Latent Heat of Fusion, J/g 260
280
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 41
25
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 4.0
9.0
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.8
2.3
Embodied Energy, MJ/kg 24
32
Embodied Water, L/kg 59
120

Common Calculations

PREN (Pitting Resistance) 5.7
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
88
Resilience: Unit (Modulus of Resilience), kJ/m3 970
130
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 25
15
Strength to Weight: Bending, points 23
16
Thermal Diffusivity, mm2/s 11
6.7
Thermal Shock Resistance, points 21
14

Alloy Composition

Carbon (C), % 0.050 to 0.12
0 to 0.030
Chromium (Cr), % 2.0 to 2.5
16 to 19
Copper (Cu), % 0 to 0.35
0
Iron (Fe), % 93.4 to 96.4
77.9 to 83.9
Manganese (Mn), % 0.4 to 1.0
0 to 1.0
Molybdenum (Mo), % 0.9 to 1.2
0
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0.25 to 0.6
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
0.1 to 1.0
Vanadium (V), % 0 to 0.030
0
Residuals, % 0 to 0.5
0