MakeItFrom.com
Menu (ESC)

AWS E90C-B3 vs. S44735 Stainless Steel

Both AWS E90C-B3 and S44735 stainless steel are iron alloys. They have 69% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is AWS E90C-B3 and the bottom bar is S44735 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 19
21
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 73
82
Tensile Strength: Ultimate (UTS), MPa 710
630
Tensile Strength: Yield (Proof), MPa 600
460

Thermal Properties

Latent Heat of Fusion, J/g 260
310
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
480
Thermal Expansion, µm/m-K 13
11

Otherwise Unclassified Properties

Base Metal Price, % relative 4.0
21
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.8
4.4
Embodied Energy, MJ/kg 24
61
Embodied Water, L/kg 59
180

Common Calculations

PREN (Pitting Resistance) 5.7
42
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
120
Resilience: Unit (Modulus of Resilience), kJ/m3 970
520
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
26
Strength to Weight: Axial, points 25
23
Strength to Weight: Bending, points 23
21
Thermal Shock Resistance, points 21
20

Alloy Composition

Carbon (C), % 0.050 to 0.12
0 to 0.030
Chromium (Cr), % 2.0 to 2.5
28 to 30
Copper (Cu), % 0 to 0.35
0
Iron (Fe), % 93.4 to 96.4
60.7 to 68.4
Manganese (Mn), % 0.4 to 1.0
0 to 1.0
Molybdenum (Mo), % 0.9 to 1.2
3.6 to 4.2
Nickel (Ni), % 0 to 0.2
0 to 1.0
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.045
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0.25 to 0.6
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
0.2 to 1.0
Vanadium (V), % 0 to 0.030
0
Residuals, % 0 to 0.5
0