MakeItFrom.com
Menu (ESC)

AWS E90C-B9 vs. CC484K Bronze

AWS E90C-B9 belongs to the iron alloys classification, while CC484K bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AWS E90C-B9 and the bottom bar is CC484K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 18
11
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
41
Tensile Strength: Ultimate (UTS), MPa 710
330
Tensile Strength: Yield (Proof), MPa 460
200

Thermal Properties

Latent Heat of Fusion, J/g 270
190
Melting Completion (Liquidus), °C 1460
1000
Melting Onset (Solidus), °C 1410
870
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 25
70
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.9
9.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
37
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 2.6
3.9
Embodied Energy, MJ/kg 37
64
Embodied Water, L/kg 91
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
32
Resilience: Unit (Modulus of Resilience), kJ/m3 550
180
Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 25
10
Strength to Weight: Bending, points 23
12
Thermal Diffusivity, mm2/s 6.9
22
Thermal Shock Resistance, points 20
12

Alloy Composition

Aluminum (Al), % 0 to 0.040
0 to 0.010
Antimony (Sb), % 0
0 to 0.1
Carbon (C), % 0.080 to 0.13
0
Chromium (Cr), % 8.0 to 10.5
0
Copper (Cu), % 0 to 0.2
84.5 to 87.5
Iron (Fe), % 84.4 to 90.9
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0 to 1.2
0 to 0.2
Molybdenum (Mo), % 0.85 to 1.2
0
Nickel (Ni), % 0 to 0.8
1.5 to 2.5
Niobium (Nb), % 0.020 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.020
0.050 to 0.4
Silicon (Si), % 0 to 0.5
0 to 0.010
Sulfur (S), % 0 to 0.015
0 to 0.050
Tin (Sn), % 0
11 to 13
Vanadium (V), % 0.15 to 0.3
0
Zinc (Zn), % 0
0 to 0.4
Residuals, % 0 to 0.5
0