MakeItFrom.com
Menu (ESC)

AWS E90C-B9 vs. C66100 Bronze

AWS E90C-B9 belongs to the iron alloys classification, while C66100 bronze belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AWS E90C-B9 and the bottom bar is C66100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 18
8.0 to 40
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
43
Tensile Strength: Ultimate (UTS), MPa 710
410 to 790
Tensile Strength: Yield (Proof), MPa 460
120 to 430

Thermal Properties

Latent Heat of Fusion, J/g 270
260
Melting Completion (Liquidus), °C 1460
1050
Melting Onset (Solidus), °C 1410
1000
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 25
34
Thermal Expansion, µm/m-K 13
17

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
29
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 2.6
2.6
Embodied Energy, MJ/kg 37
42
Embodied Water, L/kg 91
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
53 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 550
60 to 790
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 25
13 to 25
Strength to Weight: Bending, points 23
14 to 22
Thermal Diffusivity, mm2/s 6.9
9.7
Thermal Shock Resistance, points 20
15 to 29

Alloy Composition

Aluminum (Al), % 0 to 0.040
0
Carbon (C), % 0.080 to 0.13
0
Chromium (Cr), % 8.0 to 10.5
0
Copper (Cu), % 0 to 0.2
92 to 97
Iron (Fe), % 84.4 to 90.9
0 to 0.25
Lead (Pb), % 0
0.2 to 0.8
Manganese (Mn), % 0 to 1.2
0 to 1.5
Molybdenum (Mo), % 0.85 to 1.2
0
Nickel (Ni), % 0 to 0.8
0
Niobium (Nb), % 0.020 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
2.8 to 3.5
Sulfur (S), % 0 to 0.015
0
Vanadium (V), % 0.15 to 0.3
0
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0
0 to 0.5