MakeItFrom.com
Menu (ESC)

AWS E90C-B9 vs. C86400 Bronze

AWS E90C-B9 belongs to the iron alloys classification, while C86400 bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AWS E90C-B9 and the bottom bar is C86400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 18
17
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 75
40
Tensile Strength: Ultimate (UTS), MPa 710
470
Tensile Strength: Yield (Proof), MPa 460
150

Thermal Properties

Latent Heat of Fusion, J/g 270
170
Melting Completion (Liquidus), °C 1460
880
Melting Onset (Solidus), °C 1410
860
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 25
88
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.9
19
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
22

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
23
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.6
2.8
Embodied Energy, MJ/kg 37
48
Embodied Water, L/kg 91
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
63
Resilience: Unit (Modulus of Resilience), kJ/m3 550
110
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 25
16
Strength to Weight: Bending, points 23
17
Thermal Diffusivity, mm2/s 6.9
29
Thermal Shock Resistance, points 20
16

Alloy Composition

Aluminum (Al), % 0 to 0.040
0.5 to 1.5
Carbon (C), % 0.080 to 0.13
0
Chromium (Cr), % 8.0 to 10.5
0
Copper (Cu), % 0 to 0.2
56 to 62
Iron (Fe), % 84.4 to 90.9
0.4 to 2.0
Lead (Pb), % 0
0.5 to 1.5
Manganese (Mn), % 0 to 1.2
0.1 to 1.0
Molybdenum (Mo), % 0.85 to 1.2
0
Nickel (Ni), % 0 to 0.8
0 to 1.0
Niobium (Nb), % 0.020 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.5 to 1.5
Vanadium (V), % 0.15 to 0.3
0
Zinc (Zn), % 0
34 to 42
Residuals, % 0
0 to 1.0