MakeItFrom.com
Menu (ESC)

AWS E90C-B9 vs. C96900 Copper-nickel

AWS E90C-B9 belongs to the iron alloys classification, while C96900 copper-nickel belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AWS E90C-B9 and the bottom bar is C96900 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 18
4.5
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
45
Tensile Strength: Ultimate (UTS), MPa 710
850
Tensile Strength: Yield (Proof), MPa 460
830

Thermal Properties

Latent Heat of Fusion, J/g 270
210
Melting Completion (Liquidus), °C 1460
1060
Melting Onset (Solidus), °C 1410
960
Specific Heat Capacity, J/kg-K 470
380
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.9
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
39
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 2.6
4.6
Embodied Energy, MJ/kg 37
72
Embodied Water, L/kg 91
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
38
Resilience: Unit (Modulus of Resilience), kJ/m3 550
2820
Stiffness to Weight: Axial, points 14
7.7
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 25
27
Strength to Weight: Bending, points 23
23
Thermal Shock Resistance, points 20
30

Alloy Composition

Aluminum (Al), % 0 to 0.040
0
Carbon (C), % 0.080 to 0.13
0
Chromium (Cr), % 8.0 to 10.5
0
Copper (Cu), % 0 to 0.2
73.6 to 78
Iron (Fe), % 84.4 to 90.9
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0 to 1.2
0.050 to 0.3
Molybdenum (Mo), % 0.85 to 1.2
0
Nickel (Ni), % 0 to 0.8
14.5 to 15.5
Niobium (Nb), % 0.020 to 0.1
0 to 0.1
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.3
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
7.5 to 8.5
Vanadium (V), % 0.15 to 0.3
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5