MakeItFrom.com
Menu (ESC)

AWS E90C-D2 vs. R30075 Cobalt

AWS E90C-D2 belongs to the iron alloys classification, while R30075 cobalt belongs to the cobalt alloys. There are 26 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AWS E90C-D2 and the bottom bar is R30075 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210 to 250
Elongation at Break, % 19
12
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
82 to 98
Tensile Strength: Ultimate (UTS), MPa 690
780 to 1280
Tensile Strength: Yield (Proof), MPa 620
480 to 840

Thermal Properties

Latent Heat of Fusion, J/g 250
320
Melting Completion (Liquidus), °C 1460
1360
Melting Onset (Solidus), °C 1420
1290
Specific Heat Capacity, J/kg-K 470
450
Thermal Conductivity, W/m-K 49
13
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
2.1

Otherwise Unclassified Properties

Density, g/cm3 7.8
8.4
Embodied Carbon, kg CO2/kg material 1.6
8.1
Embodied Energy, MJ/kg 21
110
Embodied Water, L/kg 49
530

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
84 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 1010
560 to 1410
Stiffness to Weight: Axial, points 13
14 to 17
Stiffness to Weight: Bending, points 24
24 to 25
Strength to Weight: Axial, points 25
26 to 42
Strength to Weight: Bending, points 22
22 to 31
Thermal Diffusivity, mm2/s 13
3.5
Thermal Shock Resistance, points 20
21 to 29

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Boron (B), % 0
0 to 0.010
Carbon (C), % 0 to 0.12
0 to 0.35
Chromium (Cr), % 0
27 to 30
Cobalt (Co), % 0
58.7 to 68
Copper (Cu), % 0 to 0.35
0
Iron (Fe), % 95.5 to 98.6
0 to 0.75
Manganese (Mn), % 1.0 to 1.9
0 to 1.0
Molybdenum (Mo), % 0.4 to 0.6
5.0 to 7.0
Nickel (Ni), % 0
0 to 0.5
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.025
0 to 0.020
Silicon (Si), % 0 to 0.9
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0 to 0.1
Tungsten (W), % 0
0 to 0.2
Vanadium (V), % 0 to 0.030
0
Residuals, % 0 to 0.5
0