MakeItFrom.com
Menu (ESC)

AWS E90C-K3 vs. EN 1.4530 Stainless Steel

Both AWS E90C-K3 and EN 1.4530 stainless steel are iron alloys. They have 78% of their average alloy composition in common. There are 19 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is AWS E90C-K3 and the bottom bar is EN 1.4530 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Tensile Strength: Ultimate (UTS), MPa 710
1030 to 1370

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1410
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Expansion, µm/m-K 13
11

Otherwise Unclassified Properties

Base Metal Price, % relative 3.4
15
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.7
3.4
Embodied Energy, MJ/kg 23
46
Embodied Water, L/kg 53
130

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 25
36 to 48
Strength to Weight: Bending, points 22
29 to 35
Thermal Shock Resistance, points 21
35 to 47

Alloy Composition

Aluminum (Al), % 0
0.6 to 0.8
Carbon (C), % 0 to 0.15
0 to 0.015
Chromium (Cr), % 0 to 0.15
11.5 to 12.5
Copper (Cu), % 0 to 0.35
0
Iron (Fe), % 92.6 to 98.5
74.4 to 77.3
Manganese (Mn), % 0.75 to 2.3
0 to 0.1
Molybdenum (Mo), % 0.25 to 0.65
1.9 to 2.2
Nickel (Ni), % 0.5 to 2.5
8.5 to 9.5
Nitrogen (N), % 0
0 to 0.010
Phosphorus (P), % 0 to 0.025
0 to 0.010
Silicon (Si), % 0 to 0.8
0 to 0.1
Sulfur (S), % 0 to 0.025
0 to 0.0050
Titanium (Ti), % 0
0.28 to 0.37
Vanadium (V), % 0 to 0.030
0
Residuals, % 0 to 0.5
0