MakeItFrom.com
Menu (ESC)

AWS ENiCrFe-3 vs. C33200 Brass

AWS ENiCrFe-3 belongs to the nickel alloys classification, while C33200 brass belongs to the copper alloys. There are 20 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is AWS ENiCrFe-3 and the bottom bar is C33200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 34
7.0 to 60
Poisson's Ratio 0.3
0.31
Shear Modulus, GPa 74
40
Tensile Strength: Ultimate (UTS), MPa 630
320 to 520

Thermal Properties

Latent Heat of Fusion, J/g 310
170
Melting Completion (Liquidus), °C 1370
930
Melting Onset (Solidus), °C 1320
900
Specific Heat Capacity, J/kg-K 460
380
Thermal Expansion, µm/m-K 13
20

Otherwise Unclassified Properties

Base Metal Price, % relative 65
24
Density, g/cm3 8.4
8.2
Embodied Carbon, kg CO2/kg material 11
2.6
Embodied Energy, MJ/kg 150
44
Embodied Water, L/kg 260
320

Common Calculations

Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 21
11 to 17
Strength to Weight: Bending, points 19
13 to 17
Thermal Shock Resistance, points 18
11 to 17

Alloy Composition

Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 13 to 17
0
Cobalt (Co), % 0 to 0.12
0
Copper (Cu), % 0 to 0.5
65 to 68
Iron (Fe), % 0 to 10
0 to 0.070
Lead (Pb), % 0
1.5 to 2.5
Manganese (Mn), % 5.0 to 9.5
0
Nickel (Ni), % 52 to 81
0
Niobium (Nb), % 1.0 to 2.5
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Tantalum (Ta), % 0 to 0.3
0
Titanium (Ti), % 0 to 1.0
0
Zinc (Zn), % 0
29 to 33.5
Residuals, % 0
0 to 0.4