MakeItFrom.com
Menu (ESC)

AWS ENiCrFe-3 vs. C33500 Brass

AWS ENiCrFe-3 belongs to the nickel alloys classification, while C33500 brass belongs to the copper alloys. There are 20 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is AWS ENiCrFe-3 and the bottom bar is C33500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 34
3.0 to 28
Poisson's Ratio 0.3
0.31
Shear Modulus, GPa 74
40
Tensile Strength: Ultimate (UTS), MPa 630
340 to 650

Thermal Properties

Latent Heat of Fusion, J/g 310
170
Melting Completion (Liquidus), °C 1370
930
Melting Onset (Solidus), °C 1320
900
Specific Heat Capacity, J/kg-K 460
390
Thermal Expansion, µm/m-K 13
20

Otherwise Unclassified Properties

Base Metal Price, % relative 65
24
Density, g/cm3 8.4
8.1
Embodied Carbon, kg CO2/kg material 11
2.7
Embodied Energy, MJ/kg 150
45
Embodied Water, L/kg 260
320

Common Calculations

Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 21
12 to 22
Strength to Weight: Bending, points 19
13 to 21
Thermal Shock Resistance, points 18
11 to 22

Alloy Composition

Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 13 to 17
0
Cobalt (Co), % 0 to 0.12
0
Copper (Cu), % 0 to 0.5
62 to 65
Iron (Fe), % 0 to 10
0 to 0.1
Lead (Pb), % 0
0.25 to 0.7
Manganese (Mn), % 5.0 to 9.5
0
Nickel (Ni), % 52 to 81
0
Niobium (Nb), % 1.0 to 2.5
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Tantalum (Ta), % 0 to 0.3
0
Titanium (Ti), % 0 to 1.0
0
Zinc (Zn), % 0
33.8 to 37.8
Residuals, % 0
0 to 0.4