MakeItFrom.com
Menu (ESC)

AWS ENiCrMo-4 vs. AWS E320

AWS ENiCrMo-4 belongs to the nickel alloys classification, while AWS E320 belongs to the iron alloys. They have 58% of their average alloy composition in common. There are 20 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AWS ENiCrMo-4 and the bottom bar is AWS E320.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
200
Elongation at Break, % 28
34
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 84
77
Tensile Strength: Ultimate (UTS), MPa 790
620

Thermal Properties

Latent Heat of Fusion, J/g 320
300
Melting Completion (Liquidus), °C 1590
1410
Melting Onset (Solidus), °C 1530
1360
Specific Heat Capacity, J/kg-K 410
460
Thermal Expansion, µm/m-K 12
14

Otherwise Unclassified Properties

Base Metal Price, % relative 70
38
Density, g/cm3 9.0
8.2
Embodied Carbon, kg CO2/kg material 13
6.5
Embodied Energy, MJ/kg 170
91
Embodied Water, L/kg 280
220

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 22
24
Strength to Weight: Axial, points 24
21
Strength to Weight: Bending, points 21
20
Thermal Shock Resistance, points 22
16

Alloy Composition

Carbon (C), % 0 to 0.020
0 to 0.070
Chromium (Cr), % 14.5 to 16.5
19 to 21
Cobalt (Co), % 0 to 2.5
0
Copper (Cu), % 0 to 0.5
3.0 to 4.0
Iron (Fe), % 4.0 to 7.0
31.8 to 43.5
Manganese (Mn), % 0 to 1.0
0.5 to 2.5
Molybdenum (Mo), % 15 to 17
2.0 to 3.0
Nickel (Ni), % 49.9 to 63.5
32 to 36
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.030
Tungsten (W), % 3.0 to 4.5
0
Vanadium (V), % 0 to 0.35
0
Residuals, % 0 to 0.5
0