MakeItFrom.com
Menu (ESC)

AWS ENiCu-7 vs. 7020 Aluminum

AWS ENiCu-7 belongs to the nickel alloys classification, while 7020 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS ENiCu-7 and the bottom bar is 7020 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 160
70
Elongation at Break, % 34
8.4 to 14
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 62
26
Tensile Strength: Ultimate (UTS), MPa 550
190 to 390

Thermal Properties

Latent Heat of Fusion, J/g 280
380
Melting Completion (Liquidus), °C 1270
650
Melting Onset (Solidus), °C 1230
610
Specific Heat Capacity, J/kg-K 430
880
Thermal Conductivity, W/m-K 21
150
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.3
39
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
120

Otherwise Unclassified Properties

Base Metal Price, % relative 50
9.5
Density, g/cm3 8.7
2.9
Embodied Carbon, kg CO2/kg material 8.0
8.3
Embodied Energy, MJ/kg 110
150
Embodied Water, L/kg 250
1150

Common Calculations

Stiffness to Weight: Axial, points 10
13
Stiffness to Weight: Bending, points 21
47
Strength to Weight: Axial, points 17
18 to 37
Strength to Weight: Bending, points 17
25 to 41
Thermal Diffusivity, mm2/s 5.5
59
Thermal Shock Resistance, points 18
8.3 to 17

Alloy Composition

Aluminum (Al), % 0 to 0.75
91.2 to 94.8
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 0
0.1 to 0.35
Copper (Cu), % 20.6 to 38
0 to 0.2
Iron (Fe), % 0 to 2.5
0 to 0.4
Magnesium (Mg), % 0
1.0 to 1.4
Manganese (Mn), % 0 to 4.0
0.050 to 0.5
Nickel (Ni), % 62 to 69
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.5
0 to 0.35
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0 to 1.0
0 to 0.25
Zinc (Zn), % 0
4.0 to 5.0
Zirconium (Zr), % 0
0.080 to 0.25
Residuals, % 0
0 to 0.15