MakeItFrom.com
Menu (ESC)

AWS ER100S-1 vs. EN 1.4581 Stainless Steel

Both AWS ER100S-1 and EN 1.4581 stainless steel are iron alloys. They have 70% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AWS ER100S-1 and the bottom bar is EN 1.4581 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 18
28
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
78
Tensile Strength: Ultimate (UTS), MPa 770
510
Tensile Strength: Yield (Proof), MPa 700
210

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1410
1400
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 49
15
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 3.6
21
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.8
4.2
Embodied Energy, MJ/kg 24
59
Embodied Water, L/kg 54
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
120
Resilience: Unit (Modulus of Resilience), kJ/m3 1290
110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 27
18
Strength to Weight: Bending, points 24
18
Thermal Diffusivity, mm2/s 13
3.9
Thermal Shock Resistance, points 23
12

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Carbon (C), % 0 to 0.080
0 to 0.070
Chromium (Cr), % 0 to 0.3
18 to 20
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 93.5 to 96.9
61.4 to 71
Manganese (Mn), % 1.3 to 1.8
0 to 1.5
Molybdenum (Mo), % 0.25 to 0.55
2.0 to 2.5
Nickel (Ni), % 1.4 to 2.1
9.0 to 12
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.010
0 to 0.040
Silicon (Si), % 0.2 to 0.55
0 to 1.5
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0 to 0.050
0
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0 to 0.5
0