MakeItFrom.com
Menu (ESC)

AWS ER100S-1 vs. EN 1.7383 Steel

Both AWS ER100S-1 and EN 1.7383 steel are iron alloys. They have a very high 97% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AWS ER100S-1 and the bottom bar is EN 1.7383 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 18
20 to 23
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
74
Tensile Strength: Ultimate (UTS), MPa 770
560 to 610
Tensile Strength: Yield (Proof), MPa 700
300 to 400

Thermal Properties

Latent Heat of Fusion, J/g 250
260
Melting Completion (Liquidus), °C 1460
1470
Melting Onset (Solidus), °C 1410
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 49
39
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 3.6
3.9
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.8
1.8
Embodied Energy, MJ/kg 24
23
Embodied Water, L/kg 54
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1290
240 to 420
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 27
20 to 22
Strength to Weight: Bending, points 24
19 to 20
Thermal Diffusivity, mm2/s 13
11
Thermal Shock Resistance, points 23
16 to 18

Alloy Composition

Aluminum (Al), % 0 to 0.1
0 to 0.040
Carbon (C), % 0 to 0.080
0.080 to 0.15
Chromium (Cr), % 0 to 0.3
2.0 to 2.5
Copper (Cu), % 0 to 0.25
0 to 0.3
Iron (Fe), % 93.5 to 96.9
94.3 to 96.6
Manganese (Mn), % 1.3 to 1.8
0.4 to 0.8
Molybdenum (Mo), % 0.25 to 0.55
0.9 to 1.1
Nickel (Ni), % 1.4 to 2.1
0 to 0.3
Phosphorus (P), % 0 to 0.010
0 to 0.025
Silicon (Si), % 0.2 to 0.55
0 to 0.5
Sulfur (S), % 0 to 0.010
0 to 0.010
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0 to 0.050
0
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0 to 0.5
0