MakeItFrom.com
Menu (ESC)

AWS ER100S-1 vs. CC752S Brass

AWS ER100S-1 belongs to the iron alloys classification, while CC752S brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AWS ER100S-1 and the bottom bar is CC752S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 18
8.4
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 770
350
Tensile Strength: Yield (Proof), MPa 700
190

Thermal Properties

Latent Heat of Fusion, J/g 250
170
Melting Completion (Liquidus), °C 1460
840
Melting Onset (Solidus), °C 1410
800
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 49
110
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
25
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
28

Otherwise Unclassified Properties

Base Metal Price, % relative 3.6
24
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 1.8
2.7
Embodied Energy, MJ/kg 24
46
Embodied Water, L/kg 54
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
25
Resilience: Unit (Modulus of Resilience), kJ/m3 1290
180
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 27
12
Strength to Weight: Bending, points 24
13
Thermal Diffusivity, mm2/s 13
35
Thermal Shock Resistance, points 23
12

Alloy Composition

Aluminum (Al), % 0 to 0.1
0.3 to 0.7
Antimony (Sb), % 0
0 to 0.14
Arsenic (As), % 0
0.040 to 0.14
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.25
61.5 to 64.5
Iron (Fe), % 93.5 to 96.9
0 to 0.3
Lead (Pb), % 0
1.5 to 2.2
Manganese (Mn), % 1.3 to 1.8
0 to 0.1
Molybdenum (Mo), % 0.25 to 0.55
0
Nickel (Ni), % 1.4 to 2.1
0 to 0.2
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0.2 to 0.55
0 to 0.020
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.3
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0
31.5 to 36.7
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0 to 0.5
0