MakeItFrom.com
Menu (ESC)

AWS ER100S-1 vs. Grade 18 Titanium

AWS ER100S-1 belongs to the iron alloys classification, while grade 18 titanium belongs to the titanium alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AWS ER100S-1 and the bottom bar is grade 18 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 18
11 to 17
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 770
690 to 980
Tensile Strength: Yield (Proof), MPa 700
540 to 810

Thermal Properties

Latent Heat of Fusion, J/g 250
410
Melting Completion (Liquidus), °C 1460
1640
Melting Onset (Solidus), °C 1410
1590
Specific Heat Capacity, J/kg-K 470
550
Thermal Conductivity, W/m-K 49
8.3
Thermal Expansion, µm/m-K 13
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
2.7

Otherwise Unclassified Properties

Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 1.8
41
Embodied Energy, MJ/kg 24
670
Embodied Water, L/kg 54
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
87 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 1290
1380 to 3110
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 27
43 to 61
Strength to Weight: Bending, points 24
39 to 49
Thermal Diffusivity, mm2/s 13
3.4
Thermal Shock Resistance, points 23
47 to 67

Alloy Composition

Aluminum (Al), % 0 to 0.1
2.5 to 3.5
Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.25
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 93.5 to 96.9
0 to 0.25
Manganese (Mn), % 1.3 to 1.8
0
Molybdenum (Mo), % 0.25 to 0.55
0
Nickel (Ni), % 1.4 to 2.1
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0.2 to 0.55
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.1
92.5 to 95.5
Vanadium (V), % 0 to 0.050
2.0 to 3.0
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0
0 to 0.4