MakeItFrom.com
Menu (ESC)

AWS ER100S-1 vs. Grade 21 Titanium

AWS ER100S-1 belongs to the iron alloys classification, while grade 21 titanium belongs to the titanium alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AWS ER100S-1 and the bottom bar is grade 21 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
140
Elongation at Break, % 18
9.0 to 17
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
51
Tensile Strength: Ultimate (UTS), MPa 770
890 to 1340
Tensile Strength: Yield (Proof), MPa 700
870 to 1170

Thermal Properties

Latent Heat of Fusion, J/g 250
410
Melting Completion (Liquidus), °C 1460
1740
Melting Onset (Solidus), °C 1410
1690
Specific Heat Capacity, J/kg-K 470
500
Thermal Conductivity, W/m-K 49
7.5
Thermal Expansion, µm/m-K 13
7.1

Otherwise Unclassified Properties

Base Metal Price, % relative 3.6
60
Density, g/cm3 7.8
5.4
Embodied Carbon, kg CO2/kg material 1.8
32
Embodied Energy, MJ/kg 24
490
Embodied Water, L/kg 54
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
110 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 1290
2760 to 5010
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
32
Strength to Weight: Axial, points 27
46 to 69
Strength to Weight: Bending, points 24
38 to 50
Thermal Diffusivity, mm2/s 13
2.8
Thermal Shock Resistance, points 23
66 to 100

Alloy Composition

Aluminum (Al), % 0 to 0.1
2.5 to 3.5
Carbon (C), % 0 to 0.080
0 to 0.050
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.25
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 93.5 to 96.9
0 to 0.4
Manganese (Mn), % 1.3 to 1.8
0
Molybdenum (Mo), % 0.25 to 0.55
14 to 16
Nickel (Ni), % 1.4 to 2.1
0
Niobium (Nb), % 0
2.2 to 3.2
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.17
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0.2 to 0.55
0.15 to 0.25
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.1
76 to 81.2
Vanadium (V), % 0 to 0.050
0
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0
0 to 0.4