AWS ER100S-1 vs. SAE-AISI 1018 Steel
Both AWS ER100S-1 and SAE-AISI 1018 steel are iron alloys. They have a very high 96% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.
For each property being compared, the top bar is AWS ER100S-1 and the bottom bar is SAE-AISI 1018 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
190 |
Elongation at Break, % | 18 | |
17 to 27 |
Poisson's Ratio | 0.29 | |
0.29 |
Shear Modulus, GPa | 73 | |
73 |
Tensile Strength: Ultimate (UTS), MPa | 770 | |
430 to 480 |
Tensile Strength: Yield (Proof), MPa | 700 | |
240 to 400 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
250 |
Melting Completion (Liquidus), °C | 1460 | |
1460 |
Melting Onset (Solidus), °C | 1410 | |
1420 |
Specific Heat Capacity, J/kg-K | 470 | |
470 |
Thermal Conductivity, W/m-K | 49 | |
52 |
Thermal Expansion, µm/m-K | 13 | |
12 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.7 | |
7.0 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.9 | |
8.0 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 3.6 | |
1.8 |
Density, g/cm3 | 7.8 | |
7.9 |
Embodied Carbon, kg CO2/kg material | 1.8 | |
1.4 |
Embodied Energy, MJ/kg | 24 | |
18 |
Embodied Water, L/kg | 54 | |
46 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 130 | |
75 to 100 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 1290 | |
150 to 430 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 24 | |
24 |
Strength to Weight: Axial, points | 27 | |
15 to 17 |
Strength to Weight: Bending, points | 24 | |
16 to 17 |
Thermal Diffusivity, mm2/s | 13 | |
14 |
Thermal Shock Resistance, points | 23 | |
14 to 15 |
Alloy Composition
Aluminum (Al), % | 0 to 0.1 | |
0 |
Carbon (C), % | 0 to 0.080 | |
0.15 to 0.2 |
Chromium (Cr), % | 0 to 0.3 | |
0 |
Copper (Cu), % | 0 to 0.25 | |
0 |
Iron (Fe), % | 93.5 to 96.9 | |
98.8 to 99.25 |
Manganese (Mn), % | 1.3 to 1.8 | |
0.6 to 0.9 |
Molybdenum (Mo), % | 0.25 to 0.55 | |
0 |
Nickel (Ni), % | 1.4 to 2.1 | |
0 |
Phosphorus (P), % | 0 to 0.010 | |
0 to 0.040 |
Silicon (Si), % | 0.2 to 0.55 | |
0 |
Sulfur (S), % | 0 to 0.010 | |
0 to 0.050 |
Titanium (Ti), % | 0 to 0.1 | |
0 |
Vanadium (V), % | 0 to 0.050 | |
0 |
Zirconium (Zr), % | 0 to 0.1 | |
0 |
Residuals, % | 0 to 0.5 | |
0 |