MakeItFrom.com
Menu (ESC)

AWS ER100S-1 vs. SAE-AISI 51B60 Steel

Both AWS ER100S-1 and SAE-AISI 51B60 steel are iron alloys. They have a very high 97% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AWS ER100S-1 and the bottom bar is SAE-AISI 51B60 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 18
12 to 21
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 770
660
Tensile Strength: Yield (Proof), MPa 700
400 to 550

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1410
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 49
43
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 3.6
2.1
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.8
1.4
Embodied Energy, MJ/kg 24
19
Embodied Water, L/kg 54
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
73 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 1290
420 to 800
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 27
23
Strength to Weight: Bending, points 24
22
Thermal Diffusivity, mm2/s 13
12
Thermal Shock Resistance, points 23
19

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Boron (B), % 0
0.00050 to 0.0030
Carbon (C), % 0 to 0.080
0.56 to 0.64
Chromium (Cr), % 0 to 0.3
0.7 to 0.9
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 93.5 to 96.9
97 to 97.8
Manganese (Mn), % 1.3 to 1.8
0.75 to 1.0
Molybdenum (Mo), % 0.25 to 0.55
0
Nickel (Ni), % 1.4 to 2.1
0
Phosphorus (P), % 0 to 0.010
0 to 0.035
Silicon (Si), % 0.2 to 0.55
0.15 to 0.35
Sulfur (S), % 0 to 0.010
0 to 0.040
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0 to 0.050
0
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0 to 0.5
0