MakeItFrom.com
Menu (ESC)

AWS ER100S-1 vs. C85700 Brass

AWS ER100S-1 belongs to the iron alloys classification, while C85700 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AWS ER100S-1 and the bottom bar is C85700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 18
17
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 770
310
Tensile Strength: Yield (Proof), MPa 700
110

Thermal Properties

Latent Heat of Fusion, J/g 250
170
Melting Completion (Liquidus), °C 1460
940
Melting Onset (Solidus), °C 1410
910
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 49
84
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
22
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
25

Otherwise Unclassified Properties

Base Metal Price, % relative 3.6
24
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 1.8
2.8
Embodied Energy, MJ/kg 24
47
Embodied Water, L/kg 54
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
41
Resilience: Unit (Modulus of Resilience), kJ/m3 1290
59
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 27
11
Strength to Weight: Bending, points 24
13
Thermal Diffusivity, mm2/s 13
27
Thermal Shock Resistance, points 23
10

Alloy Composition

Aluminum (Al), % 0 to 0.1
0 to 0.8
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.25
58 to 64
Iron (Fe), % 93.5 to 96.9
0 to 0.7
Lead (Pb), % 0
0.8 to 1.5
Manganese (Mn), % 1.3 to 1.8
0
Molybdenum (Mo), % 0.25 to 0.55
0
Nickel (Ni), % 1.4 to 2.1
0 to 1.0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0.2 to 0.55
0 to 0.050
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0.5 to 1.5
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0
32 to 40
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0
0 to 1.3