MakeItFrom.com
Menu (ESC)

AWS ER110S-1 vs. ACI-ASTM CB7Cu-2 Steel

Both AWS ER110S-1 and ACI-ASTM CB7Cu-2 steel are iron alloys. They have 80% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AWS ER110S-1 and the bottom bar is ACI-ASTM CB7Cu-2 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 17
5.7 to 11
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
75
Tensile Strength: Ultimate (UTS), MPa 870
960 to 1350
Tensile Strength: Yield (Proof), MPa 740
760 to 1180

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1410
1380
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 47
17
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 4.0
13
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.8
2.6
Embodied Energy, MJ/kg 25
38
Embodied Water, L/kg 55
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
71 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 1460
1510 to 3600
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 31
34 to 48
Strength to Weight: Bending, points 26
28 to 35
Thermal Diffusivity, mm2/s 13
4.6
Thermal Shock Resistance, points 26
32 to 45

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Carbon (C), % 0 to 0.090
0 to 0.070
Chromium (Cr), % 0 to 0.5
14 to 15.5
Copper (Cu), % 0 to 0.25
2.5 to 3.2
Iron (Fe), % 92.8 to 96.3
73.6 to 79
Manganese (Mn), % 1.4 to 1.8
0 to 0.7
Molybdenum (Mo), % 0.25 to 0.55
0
Nickel (Ni), % 1.9 to 2.6
4.5 to 5.5
Niobium (Nb), % 0
0 to 0.35
Nitrogen (N), % 0
0 to 0.050
Phosphorus (P), % 0 to 0.010
0 to 0.035
Silicon (Si), % 0.2 to 0.55
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0 to 0.040
0
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0 to 0.5
0