MakeItFrom.com
Menu (ESC)

AWS ER110S-1 vs. AWS E316LMn

Both AWS ER110S-1 and AWS E316LMn are iron alloys. Both are furnished in the as-welded condition. They have 58% of their average alloy composition in common. There are 20 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is AWS ER110S-1 and the bottom bar is AWS E316LMn.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 17
23
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
79
Tensile Strength: Ultimate (UTS), MPa 870
620

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Melting Completion (Liquidus), °C 1460
1420
Melting Onset (Solidus), °C 1410
1370
Specific Heat Capacity, J/kg-K 470
470
Thermal Expansion, µm/m-K 13
14

Otherwise Unclassified Properties

Base Metal Price, % relative 4.0
24
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.8
4.6
Embodied Energy, MJ/kg 25
64
Embodied Water, L/kg 55
180

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 31
22
Strength to Weight: Bending, points 26
20
Thermal Shock Resistance, points 26
15

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Carbon (C), % 0 to 0.090
0 to 0.040
Chromium (Cr), % 0 to 0.5
18 to 21
Copper (Cu), % 0 to 0.25
0 to 0.75
Iron (Fe), % 92.8 to 96.3
47.5 to 59.4
Manganese (Mn), % 1.4 to 1.8
5.0 to 8.0
Molybdenum (Mo), % 0.25 to 0.55
2.5 to 3.5
Nickel (Ni), % 1.9 to 2.6
15 to 18
Nitrogen (N), % 0
0.1 to 0.25
Phosphorus (P), % 0 to 0.010
0 to 0.040
Silicon (Si), % 0.2 to 0.55
0 to 0.9
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0 to 0.040
0
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0 to 0.5
0