MakeItFrom.com
Menu (ESC)

AWS ER110S-1 vs. EN 1.4905 Stainless Steel

Both AWS ER110S-1 and EN 1.4905 stainless steel are iron alloys. They have 89% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AWS ER110S-1 and the bottom bar is EN 1.4905 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 17
19
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Tensile Strength: Ultimate (UTS), MPa 870
740
Tensile Strength: Yield (Proof), MPa 740
510

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Melting Completion (Liquidus), °C 1460
1480
Melting Onset (Solidus), °C 1410
1440
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 47
26
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
3.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
4.2

Otherwise Unclassified Properties

Base Metal Price, % relative 4.0
9.5
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.8
2.8
Embodied Energy, MJ/kg 25
40
Embodied Water, L/kg 55
90

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
130
Resilience: Unit (Modulus of Resilience), kJ/m3 1460
680
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 31
26
Strength to Weight: Bending, points 26
23
Thermal Diffusivity, mm2/s 13
7.0
Thermal Shock Resistance, points 26
25

Alloy Composition

Aluminum (Al), % 0 to 0.1
0 to 0.040
Boron (B), % 0
0.00050 to 0.0050
Carbon (C), % 0 to 0.090
0.090 to 0.13
Chromium (Cr), % 0 to 0.5
8.5 to 9.5
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 92.8 to 96.3
86.2 to 88.8
Manganese (Mn), % 1.4 to 1.8
0.3 to 0.6
Molybdenum (Mo), % 0.25 to 0.55
0.9 to 1.1
Nickel (Ni), % 1.9 to 2.6
0.1 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.050 to 0.090
Phosphorus (P), % 0 to 0.010
0 to 0.020
Silicon (Si), % 0.2 to 0.55
0.1 to 0.5
Sulfur (S), % 0 to 0.010
0 to 0.010
Titanium (Ti), % 0 to 0.1
0
Tungsten (W), % 0
0.9 to 1.1
Vanadium (V), % 0 to 0.040
0.18 to 0.25
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0 to 0.5
0