MakeItFrom.com
Menu (ESC)

AWS ER110S-1 vs. EN 2.4816 Nickel

AWS ER110S-1 belongs to the iron alloys classification, while EN 2.4816 nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AWS ER110S-1 and the bottom bar is EN 2.4816 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 17
34
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
74
Tensile Strength: Ultimate (UTS), MPa 870
700
Tensile Strength: Yield (Proof), MPa 740
270

Thermal Properties

Latent Heat of Fusion, J/g 250
310
Melting Completion (Liquidus), °C 1460
1370
Melting Onset (Solidus), °C 1410
1320
Specific Heat Capacity, J/kg-K 470
460
Thermal Conductivity, W/m-K 47
15
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 4.0
55
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 1.8
9.0
Embodied Energy, MJ/kg 25
130
Embodied Water, L/kg 55
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
190
Resilience: Unit (Modulus of Resilience), kJ/m3 1460
190
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 31
23
Strength to Weight: Bending, points 26
21
Thermal Diffusivity, mm2/s 13
3.8
Thermal Shock Resistance, points 26
20

Alloy Composition

Aluminum (Al), % 0 to 0.1
0 to 0.3
Carbon (C), % 0 to 0.090
0.050 to 0.1
Chromium (Cr), % 0 to 0.5
14 to 17
Copper (Cu), % 0 to 0.25
0 to 0.5
Iron (Fe), % 92.8 to 96.3
6.0 to 10
Manganese (Mn), % 1.4 to 1.8
0 to 1.0
Molybdenum (Mo), % 0.25 to 0.55
0
Nickel (Ni), % 1.9 to 2.6
72 to 80
Phosphorus (P), % 0 to 0.010
0 to 0.020
Silicon (Si), % 0.2 to 0.55
0 to 0.5
Sulfur (S), % 0 to 0.010
0 to 0.015
Titanium (Ti), % 0 to 0.1
0 to 0.3
Vanadium (V), % 0 to 0.040
0
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0 to 0.5
0