MakeItFrom.com
Menu (ESC)

AWS ER110S-1 vs. C68800 Brass

AWS ER110S-1 belongs to the iron alloys classification, while C68800 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AWS ER110S-1 and the bottom bar is C68800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 17
2.0 to 36
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
41
Tensile Strength: Ultimate (UTS), MPa 870
570 to 890
Tensile Strength: Yield (Proof), MPa 740
390 to 790

Thermal Properties

Latent Heat of Fusion, J/g 250
190
Melting Completion (Liquidus), °C 1460
960
Melting Onset (Solidus), °C 1410
950
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 47
40
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
18
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
20

Otherwise Unclassified Properties

Base Metal Price, % relative 4.0
26
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 1.8
2.8
Embodied Energy, MJ/kg 25
48
Embodied Water, L/kg 55
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
16 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 1460
710 to 2860
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 31
19 to 30
Strength to Weight: Bending, points 26
19 to 25
Thermal Diffusivity, mm2/s 13
12
Thermal Shock Resistance, points 26
19 to 30

Alloy Composition

Aluminum (Al), % 0 to 0.1
3.0 to 3.8
Carbon (C), % 0 to 0.090
0
Chromium (Cr), % 0 to 0.5
0
Cobalt (Co), % 0
0.25 to 0.55
Copper (Cu), % 0 to 0.25
70.8 to 75.5
Iron (Fe), % 92.8 to 96.3
0 to 0.2
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 1.4 to 1.8
0
Molybdenum (Mo), % 0.25 to 0.55
0
Nickel (Ni), % 1.9 to 2.6
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0.2 to 0.55
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0 to 0.040
0
Zinc (Zn), % 0
21.3 to 24.1
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0
0 to 0.5