MakeItFrom.com
Menu (ESC)

AWS ER110S-1 vs. C86500 Bronze

AWS ER110S-1 belongs to the iron alloys classification, while C86500 bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AWS ER110S-1 and the bottom bar is C86500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 17
25
Poisson's Ratio 0.29
0.3
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 870
530
Tensile Strength: Yield (Proof), MPa 740
190

Thermal Properties

Latent Heat of Fusion, J/g 250
170
Melting Completion (Liquidus), °C 1460
880
Melting Onset (Solidus), °C 1410
860
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 47
86
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
22
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
25

Otherwise Unclassified Properties

Base Metal Price, % relative 4.0
23
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.8
2.8
Embodied Energy, MJ/kg 25
48
Embodied Water, L/kg 55
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1460
180
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 31
19
Strength to Weight: Bending, points 26
18
Thermal Diffusivity, mm2/s 13
28
Thermal Shock Resistance, points 26
17

Alloy Composition

Aluminum (Al), % 0 to 0.1
0.5 to 1.5
Carbon (C), % 0 to 0.090
0
Chromium (Cr), % 0 to 0.5
0
Copper (Cu), % 0 to 0.25
55 to 60
Iron (Fe), % 92.8 to 96.3
0.4 to 2.0
Lead (Pb), % 0
0 to 0.4
Manganese (Mn), % 1.4 to 1.8
0.1 to 1.5
Molybdenum (Mo), % 0.25 to 0.55
0
Nickel (Ni), % 1.9 to 2.6
0 to 1.0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0.2 to 0.55
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 1.0
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0 to 0.040
0
Zinc (Zn), % 0
36 to 42
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0
0 to 1.0