MakeItFrom.com
Menu (ESC)

AWS ER110S-1 vs. S38100 Stainless Steel

Both AWS ER110S-1 and S38100 stainless steel are iron alloys. They have 65% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AWS ER110S-1 and the bottom bar is S38100 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 17
45
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Tensile Strength: Ultimate (UTS), MPa 870
580
Tensile Strength: Yield (Proof), MPa 740
230

Thermal Properties

Latent Heat of Fusion, J/g 250
320
Melting Completion (Liquidus), °C 1460
1400
Melting Onset (Solidus), °C 1410
1350
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 47
15
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 4.0
20
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.8
3.8
Embodied Energy, MJ/kg 25
54
Embodied Water, L/kg 55
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
210
Resilience: Unit (Modulus of Resilience), kJ/m3 1460
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 31
21
Strength to Weight: Bending, points 26
20
Thermal Diffusivity, mm2/s 13
4.0
Thermal Shock Resistance, points 26
13

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Carbon (C), % 0 to 0.090
0 to 0.080
Chromium (Cr), % 0 to 0.5
17 to 19
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 92.8 to 96.3
57.9 to 64
Manganese (Mn), % 1.4 to 1.8
0 to 2.0
Molybdenum (Mo), % 0.25 to 0.55
0
Nickel (Ni), % 1.9 to 2.6
17.5 to 18.5
Phosphorus (P), % 0 to 0.010
0 to 0.030
Silicon (Si), % 0.2 to 0.55
1.5 to 2.5
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0 to 0.040
0
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0 to 0.5
0