MakeItFrom.com
Menu (ESC)

AWS ER110S-1 vs. S40930 Stainless Steel

Both AWS ER110S-1 and S40930 stainless steel are iron alloys. They have 89% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AWS ER110S-1 and the bottom bar is S40930 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 17
23
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
75
Tensile Strength: Ultimate (UTS), MPa 870
430
Tensile Strength: Yield (Proof), MPa 740
190

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1410
1410
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 47
25
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 4.0
8.5
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.8
2.3
Embodied Energy, MJ/kg 25
32
Embodied Water, L/kg 55
94

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
80
Resilience: Unit (Modulus of Resilience), kJ/m3 1460
94
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 31
16
Strength to Weight: Bending, points 26
16
Thermal Diffusivity, mm2/s 13
6.7
Thermal Shock Resistance, points 26
16

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Carbon (C), % 0 to 0.090
0 to 0.030
Chromium (Cr), % 0 to 0.5
10.5 to 11.7
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 92.8 to 96.3
84.7 to 89.4
Manganese (Mn), % 1.4 to 1.8
0 to 1.0
Molybdenum (Mo), % 0.25 to 0.55
0
Nickel (Ni), % 1.9 to 2.6
0 to 0.5
Niobium (Nb), % 0
0.080 to 0.75
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.010
0 to 0.040
Silicon (Si), % 0.2 to 0.55
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.020
Titanium (Ti), % 0 to 0.1
0.050 to 0.2
Vanadium (V), % 0 to 0.040
0
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0 to 0.5
0