MakeItFrom.com
Menu (ESC)

AWS ER120S-1 vs. AISI 317LMN Stainless Steel

Both AWS ER120S-1 and AISI 317LMN stainless steel are iron alloys. They have 64% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is AWS ER120S-1 and the bottom bar is AISI 317LMN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 17
45
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
79
Tensile Strength: Ultimate (UTS), MPa 930
620
Tensile Strength: Yield (Proof), MPa 830
270

Thermal Properties

Latent Heat of Fusion, J/g 260
290
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1410
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 46
14
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 9.0
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 4.2
24
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 1.9
4.8
Embodied Energy, MJ/kg 25
65
Embodied Water, L/kg 56
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
230
Resilience: Unit (Modulus of Resilience), kJ/m3 1850
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 33
22
Strength to Weight: Bending, points 27
20
Thermal Diffusivity, mm2/s 13
3.8
Thermal Shock Resistance, points 27
14

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Carbon (C), % 0 to 0.1
0 to 0.030
Chromium (Cr), % 0 to 0.6
17 to 20
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 92.4 to 96.1
54.4 to 65.4
Manganese (Mn), % 1.4 to 1.8
0 to 2.0
Molybdenum (Mo), % 0.3 to 0.65
4.0 to 5.0
Nickel (Ni), % 2.0 to 2.8
13.5 to 17.5
Nitrogen (N), % 0
0.1 to 0.2
Phosphorus (P), % 0 to 0.010
0 to 0.045
Silicon (Si), % 0.25 to 0.6
0 to 0.75
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0 to 0.030
0
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0 to 0.5
0