MakeItFrom.com
Menu (ESC)

AWS ER120S-1 vs. AISI 414 Stainless Steel

Both AWS ER120S-1 and AISI 414 stainless steel are iron alloys. They have 88% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AWS ER120S-1 and the bottom bar is AISI 414 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 17
17
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Tensile Strength: Ultimate (UTS), MPa 930
900 to 960
Tensile Strength: Yield (Proof), MPa 830
700 to 790

Thermal Properties

Latent Heat of Fusion, J/g 260
280
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1410
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 46
25
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 9.0
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 4.2
8.0
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.9
2.1
Embodied Energy, MJ/kg 25
29
Embodied Water, L/kg 56
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
140 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 1850
1260 to 1590
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 33
32 to 34
Strength to Weight: Bending, points 27
27 to 28
Thermal Diffusivity, mm2/s 13
6.7
Thermal Shock Resistance, points 27
33 to 35

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Carbon (C), % 0 to 0.1
0 to 0.15
Chromium (Cr), % 0 to 0.6
11.5 to 13.5
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 92.4 to 96.1
81.8 to 87.3
Manganese (Mn), % 1.4 to 1.8
0 to 1.0
Molybdenum (Mo), % 0.3 to 0.65
0
Nickel (Ni), % 2.0 to 2.8
1.3 to 2.5
Phosphorus (P), % 0 to 0.010
0 to 0.040
Silicon (Si), % 0.25 to 0.6
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0 to 0.030
0
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0 to 0.5
0